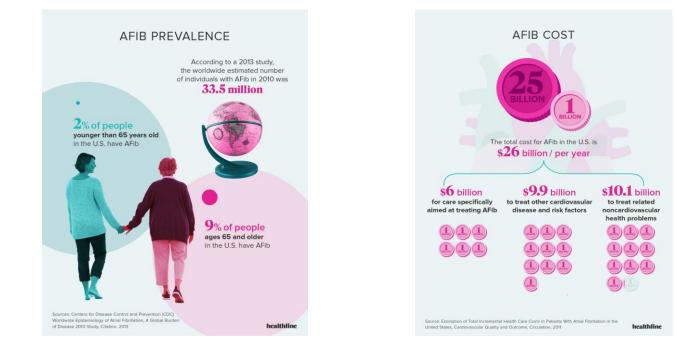


Yakima Medical Conference 2022

Contemporary Management of Atrial Fibrillation

Gopi Dandamudi, MD, MBA, FHRS Executive Medical Director Cardiovascular Service Line Center for Cardiovascular Health Virginia Mason Franciscan Health



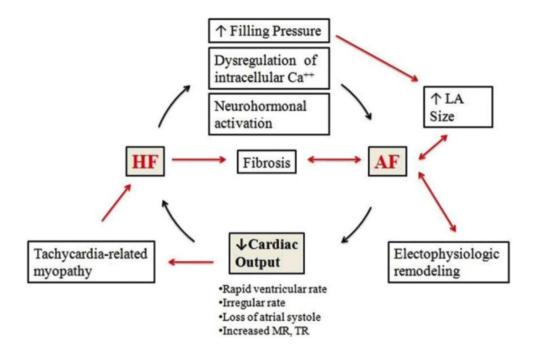
Disclosures

- Medtronic- consultant, advisory board & steering committee member
- Abbott- consultant, advisory board

Sobering facts about AF

Sobering facts about AF

- Often associated with structural heart disease & other co-occurring chronic conditions
- 5-fold increased risk of stroke that increases with age
- AF-related stroke more severe than non-AF related stroke
- 3-fold risk of HF & 2-fold increased risk of both dementia and mortality
- Hospitalizations with AF as the primary diagnosis: >467,000 annually in the US
- Contributes to >99,000 deaths per year
- Hospitalized twice as often as patients without AF
 - > 3x likely to have multiple admissions
 - > 2.1% with AF die in the hospital compared to 0.1% without it



Similarities with HF

- Increasing prevalence with age
- Complex disease processes associated with similar risk factors
 - > Age, HTN, DM, CAD, valvular heart disease
- Lifetime illnesses requiring multiple treatment modalities
- Often coexist & have worse prognosis
 - Framingham Heart Study
 - > 37% new onset AF pts had HF
 - > 57% with new onset HF had AF

Similarities with HF

Pulignano et al., Heart Int. 2016

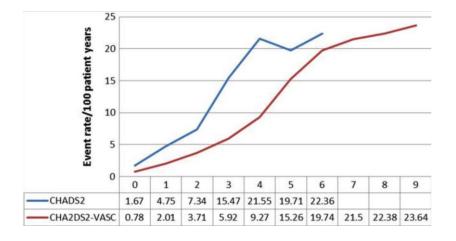
Treatment Strategies

Anticoagulation

- > OAC
- Left atrial appendage occlusion

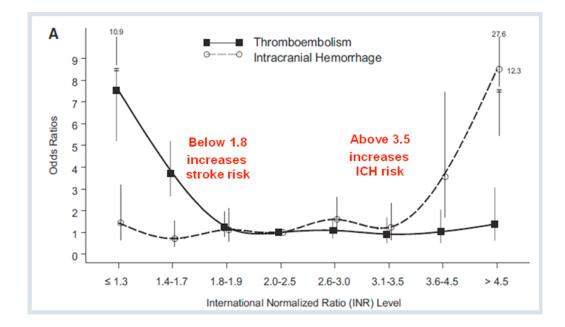
Rate control strategies

- > Pharmacotherapy
- ➢ AV junction ablation


Rhythm control strategies

> Antiarrhythmics vs. Ablation

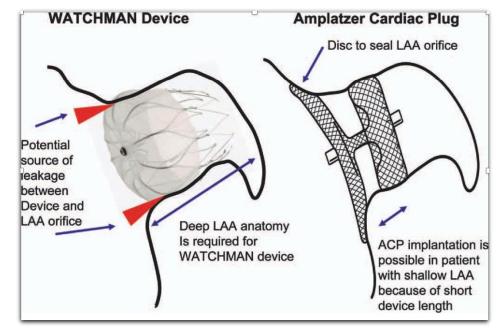
Modifiable risk factors


Thromboembolic Risk Assessment

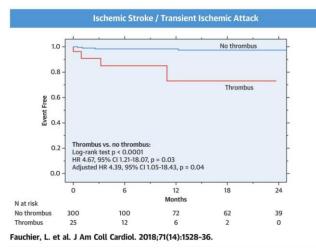
- Oral anticoagulation superior to antiplatelet therapy
 - As age increases, efficacy of antiplatelet therapy decreases
 - Efficacy with OAC remains unchanged
 - Smaller benefit with Clopidogrel + ASA but not similar to OAC

Warfarin: A Narrow Therapeutic Index

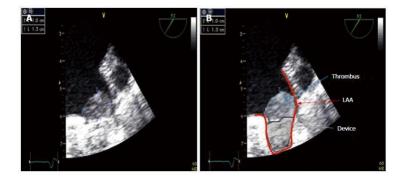
DOAC Therapy in the Elderly


Comparison of novel oral anticoagulants in patients ≥75 years

Novel agent	Trial	Intervention versus warfarin unless specified	Number of participants ≥75 years	Hazard Ratio for Stroke Risk	Hazard Ratio for major Hemorrhage
Dabigatran	RE-LY [<u>10</u>]	Dabigatran 110 mg bid	7,258	0.88 (0.66– 1.17)	1.01 (0.83– 1.23)
		Dabigatran 150 mg bid		0.67 (0.49– 0.90)	1.18 (0.98– 1.42)
Rivaroxaban	ROCKET- AF [<u>11]</u>	Rivaroxaban 20 mg bid (15 mg od if eCrCl 30–49 ml/min)	6,229	0.88 (0.75– 1.03) ^a	1.04 (0.90– 1.20) ^a
Apixaban	ARISTOTLE [12]	Apixaban 5 mg bid	5,678	0.79 (0.65– 0.95) ^b	0.69 (0.60– 0.80) ^b
	AVERROES [47]	Apixaban 5 mg bid (2.5 mg bid if 2 out of 3 of the following criteria; serum creatinine ≥133 ml/min, age ≥80 years or weight ≤60 kg) vs. Aspirin	1,897	0.46 (0.33– 0.65) ^b	1.13 (0.74– 1.75) ^b


Left Atrial Appendage Occlusion (LAAO)

- Several in the market
 - Percutaneous vs. Epicardial approaches (catheter based vs. minimally invasive)
- Rapidly growing in market share but limitations will be cost



Device Related Thrombus (7.2% per year)

Rate Control Strategies

- Predominant initial strategy
- AFFIRM¹ (age >65, HF 23%, normal EF in 74%, resting HR <80; <110 bpm with 6-minute walk test)
 - > No survival advantage between rate & rhythm control
 - Ischemic stroke rates similar in both groups
 - Adverse events similar in HF pts
- RACE II² (age <80, LVEF <40%-15%, target HR <110 bpm at rest)
 - > No difference in cardiovascular events

1. Wise DG et al., NEJM 2002 2. Van Gelder IC et al., NEJM 2010

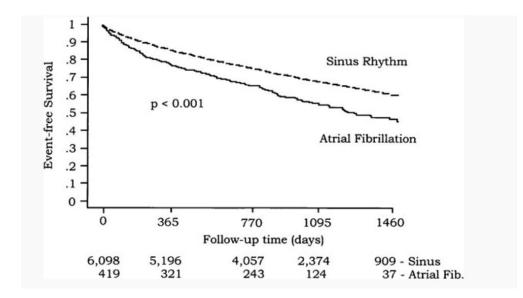
Rate Control Strategies

Beta blockers

- First line therapy; may need to be used in HF situations as well
- Better outcomes in patients treated in sinus rhythm than in AF¹
- Do not improve mortality or reduce HF admissions²

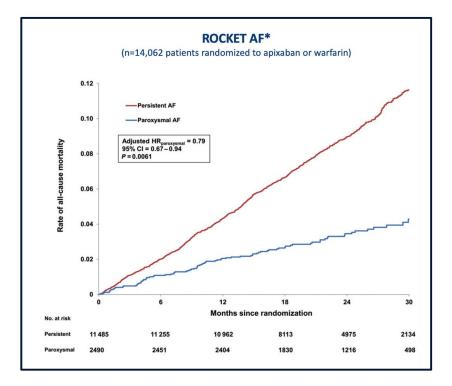
Digoxin

- DIG trial showed no mortality benefit in HF pts & sinus rhythm (did result in less hospitalizations)³
- Controversial if it increases mortality


* Calcium channel blockers

- Non-dihydropyridines not routinely recommended in HF pts with AF
- Can use for acute rate control (start without IV bolus)

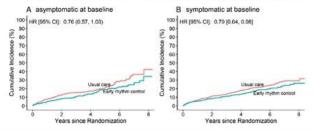
- Amiodarone
 - Can be used for rate control (has beta blocker and calcium channel blocker properties) for both acute and chronic control


Rhythm Control (SOLVD trial)

Dries DL et al. JACC 1998

Mortality Differences (PAF vs. PeAF)

Steinberg BA et al. Eur Heart J 2015

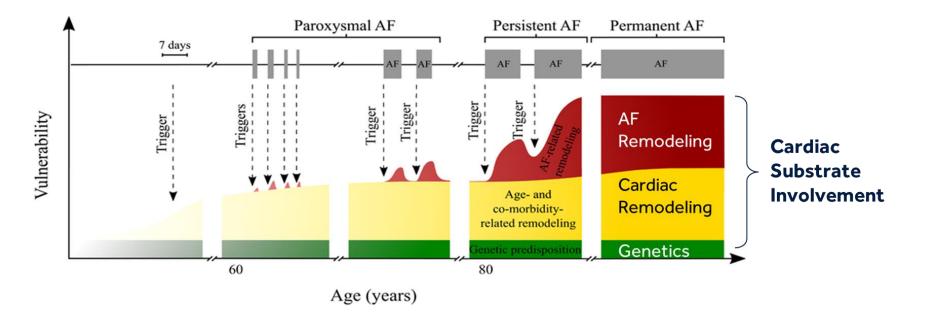

EAST-AFNET 4 Trial

and cardio 2633 v	ith atrial fibrillation diag vascular conditions appro vith known AF-related sy	4 trial population nosed within a year prior oximating a CHA ₂ DS ₂ VAS mptoms (EHRA score) at thm Control or Usual Car	c score of ≥ 2 baseline	
	trol in all patients 5/2633)	Usual Care, including symptom-directed rhythm control therapy (n=1328/2633)		
Asymptomatic at baseline (n=395)	Symptomatic at baseline (n=910)	Asymptomatic at baseline (n=406)	Symptomatic at baseline (n=922)	

No difference in treatment pattern between asymptomatic and symptomatic patients. Excellent symptom control in both randomized groups at two years.

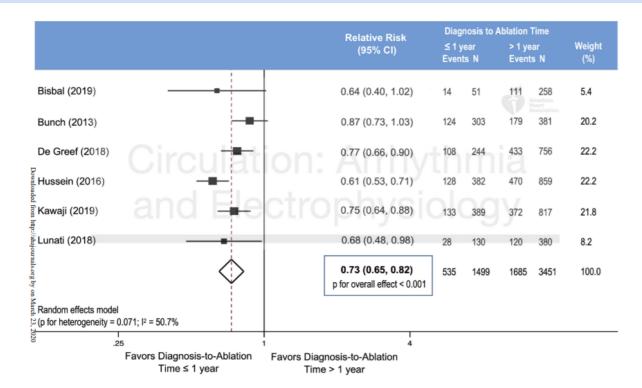
Ca. 1/4 treated with AF ablation and 3/4 treated with antiarrhythmic drugs at 2 years Ca. 8% treated with AF ablation and 9% treated with antiarrhythmic drugs at 2 years

Similar reduction of cardiovascular death, stroke, or hospitalisation for heart failure or acute coronary syndrome in symptomatic and asymptomatic patients

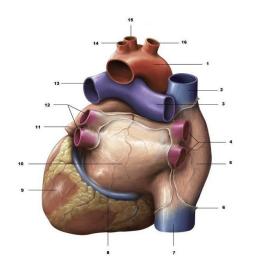


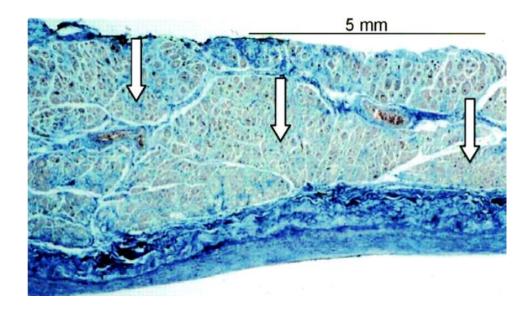
Our findings support the systematic, early initiation of rhythm control therapy in asymptomatic patients with atrial fibrillation and concomitant cardiovascular conditions.

Willems S et al., EHJ 2021

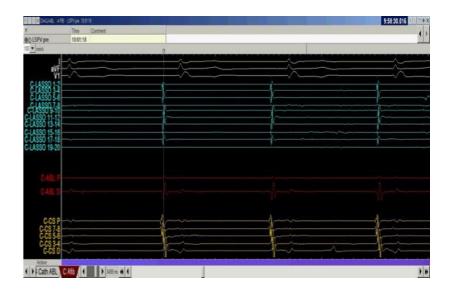

Adverse Atrial Remodeling

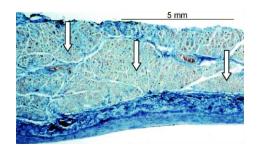
Heijman et al. Circ Res. 2014

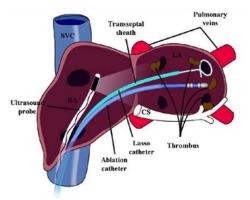

Does Timing of AF ablation Matter?



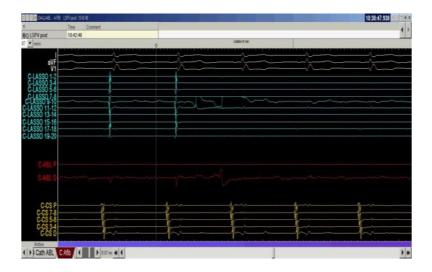
Chew DS et al. Circ Arrhythm Electrophysiol. 2020

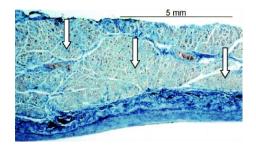

Pulmonary Vein Sleeve

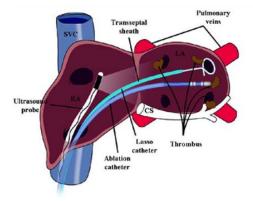




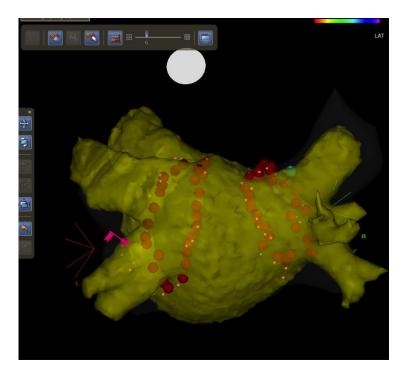
Pulmonary Vein Isolation

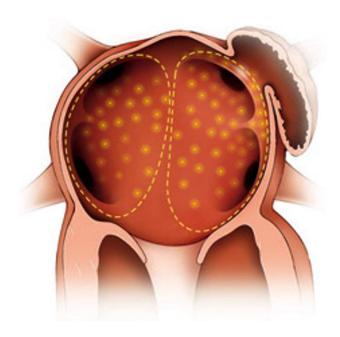






Pulmonary Vein Isolation



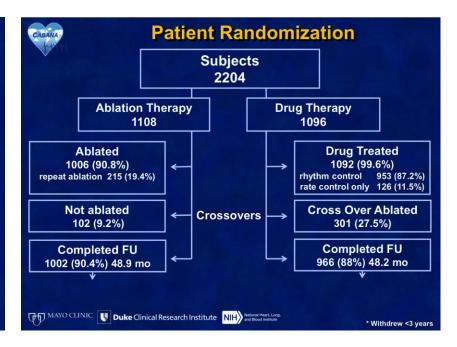


Pulmonary Vein Isolation

CABANA Trial

Purpose of CABANA

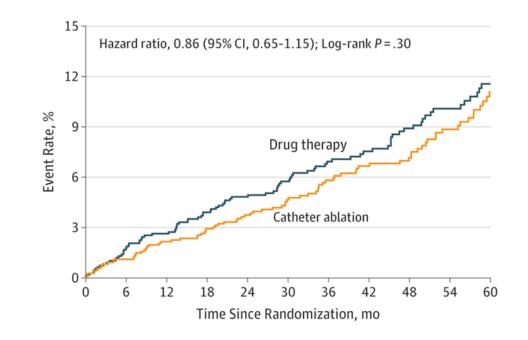
Compare Ablation to state-of-the-art drug therapy for patients with new onset / undertreated AF


Primary Endpoint

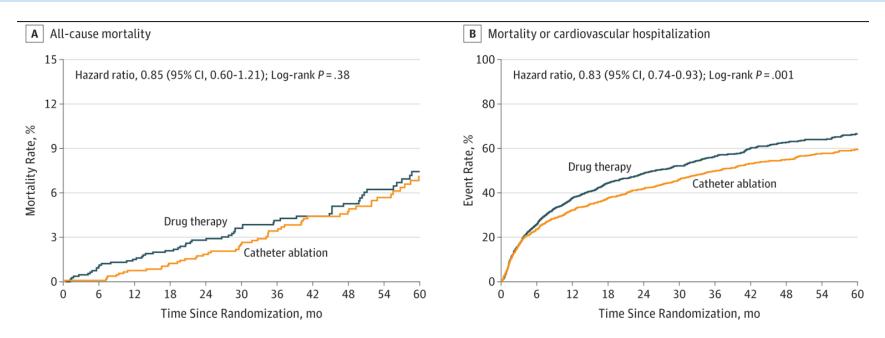
 All-cause mortality, disabling stroke, serious bleeding, or cardiac arrest

Major Secondary Endpoints

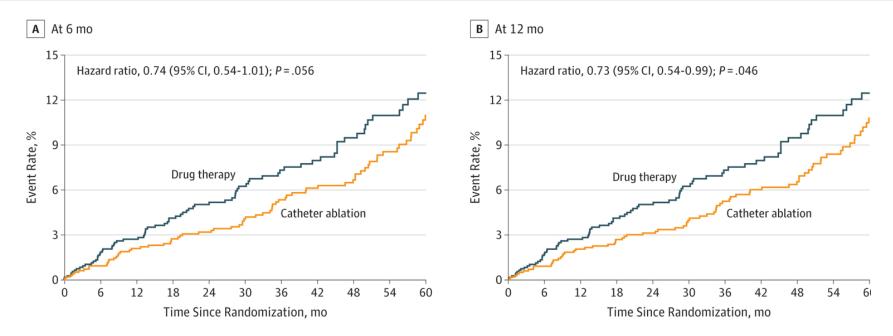
- All-cause mortality
- Death (all-cause) or cardiovascular hospitalization


MAYO CLINIC U Duke Clinical Research Institute NIH Automati Heart, Lung

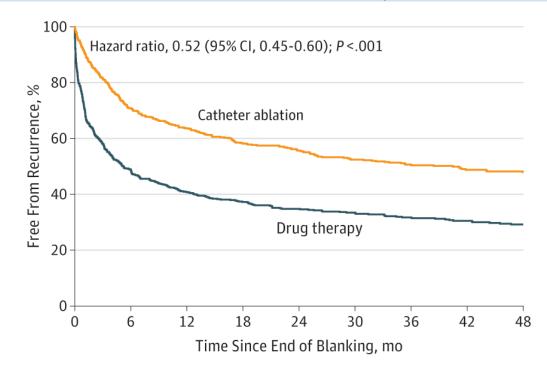
Packer DL et al., Circulation 2021


CABANA Trial Primary Endpoint

Packer DL et al., JAMA 2019


CABANA Trial Intention-to-Treat Analysis

Packer DL et al., JAMA 2019


CABANA Trial Per-Protocol Analysis

Packer DL et al., JAMA 2019

CABANA Trial Intention-to-Treat Analysis

Packer DL et al., JAMA 2019

CABANA Trial

Conclusion of the CABANA Trial

- Ablation did not produce a significant reduction in the primary endpoint and all-cause mortality.
- The results were affected by cross-overs in both directions and lower than expected event rates.
- Ablation significantly reduced mortality or CV hospitalization by 17% compared to drug therapy.
- There also was a significant 47% reduction in recurrent AF with ablation compared to drug therapy.
- A 33% reduction in the primary endpoint and 40% mortality risk reduction was present when patients actually *underwent* ablation *(treatment received).*
- Ablation is an acceptable treatment strategy for treating AF with low adverse event rates even in higher risk patients.

MAYO CLINIC U Duke Clinical Research Institute NIH National Heart, Lung

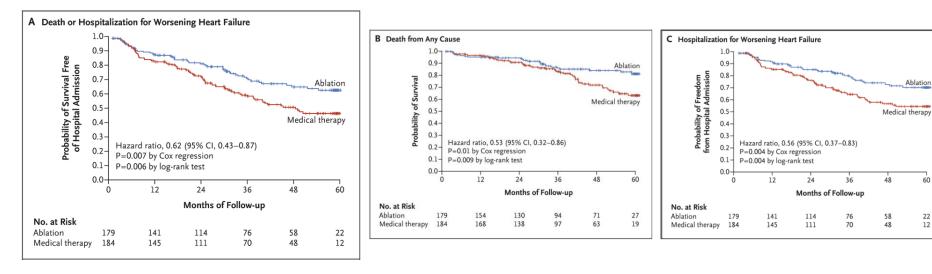
Packer DL et al., Circulation 2021

CASTLE-AF Rationale and Objective

Study the effectiveness of <u>catheter ablation</u> of Atrial Fibrillation in patients with heart failure in <u>improving hard primary endpoints of mortality and</u> <u>heart failure progression</u> when compared to conventional standard treatment

Marrouche NF et al., NEJM 2018

CASTLE-AF Inclusion Criteria


- Symptomatic paroxysmal or persistent AF
- Failure or intolerance to ≥ 1 or unwillingness to take AAD
- LVEF ≤ 35%
- NYHA class ≥ II

 ICD/CRTD with Home Monitoring[™] capabilities already implanted due to primary or secondary prevention

Marrouche NF et al., NEJM 2018

CASTLE-AF

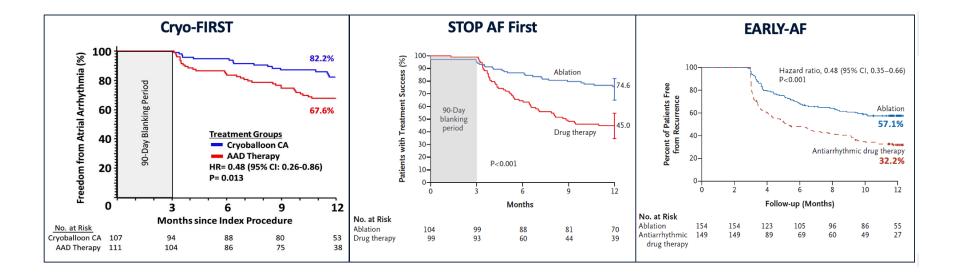
Marrouche NF et al., NEJM 2018

Evidence for Cryoablation as First Line Rx

Is cryoablation superior to antiarrhythmics as initial therapy for the prevention of atrial arrhythmia recurrence in symptomatic patients?

Study Designs

STUDY	Cryo-FIRST ¹	STOP AF First ²	EARLY-AF ³		
SPONSOR	Medtronic	Medtronic	Investigator initiated		
# SITES (COUNTRIES)	20 Sites (Belgium, Croatia, France, Germany, Italy, Netherlands, Norway, Argentina and Australia)	24 Sites (United States)	18 Sites (Canada)		
# ENROLLED	220	225	303		
MONITORING USED	12-lead ECG and 7-day Holter at 1, 3, 6, 9 and 12 months	Patient-activated TTMs (weekly and when symptomatic post-blanking); 24 Hour Holter at 6 and 12 mo, 12-lead ECG at 1, 3, 6 and 12 months	Continuous monitoring with the LINQ insertable cardiac monitor (ICM) from therapy initiation through end of follow- up; 24 hr. Holter and 12-lead ECG at 3, 6, and 12 months		
ABLATION STRATEGY	PVI completion / focal trigger allowed w/Freezor MAX; re-ablation allowed during blanking	Only PVI in LA, no re-ablation procedures allowed	PVI only, no re-ablation procedures allowed		
ABLATION DOSING	At discretion of investigator	2 applications, each 3 minutes in duration	2 applications, each 3 minutes in duration		
ABLATION CATHETER USED	AFA and Freezor MAX	AFA and Freezor MAX	AFA and Freezor MAX		

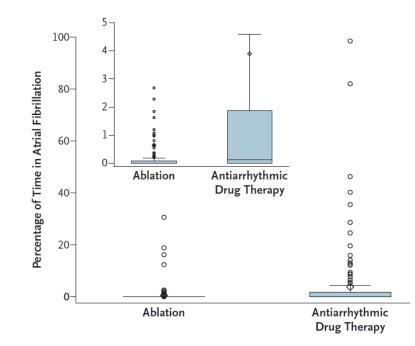


1. Kuniss M et al. EP Europace 2021

2. Wazni OM et al. N Engl J Med 2021

3. Andrade JG et al. N Engl J Med 2021

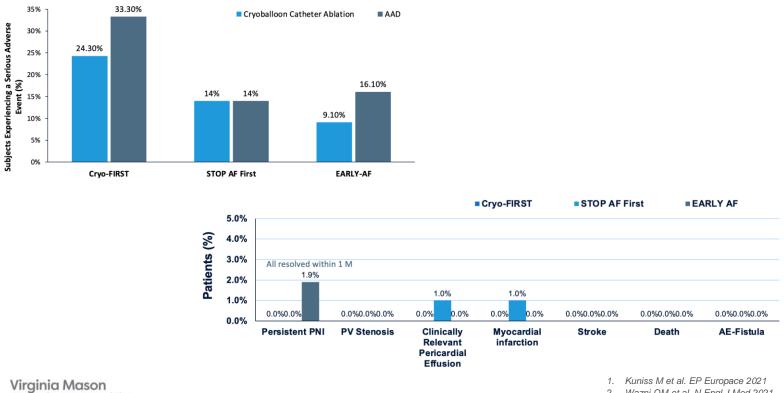
Primary Efficacy



1. Kuniss M et al. EP Europace 2021

2. Wazni OM et al. N Engl J Med 2021

3. Andrade JG et al. N Engl J Med 2021

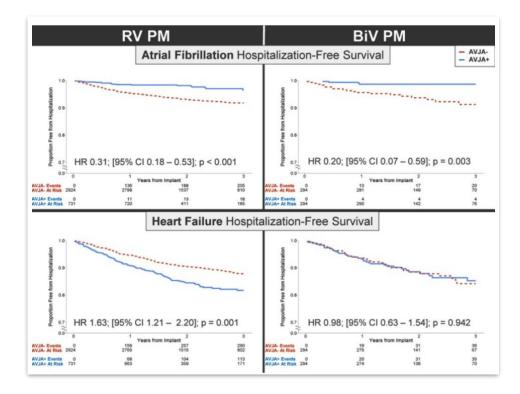

Arrythmia Burden Reduction in EARLY-AF

Andrade JG et al. N Engl J Med 2021

Safety Signals

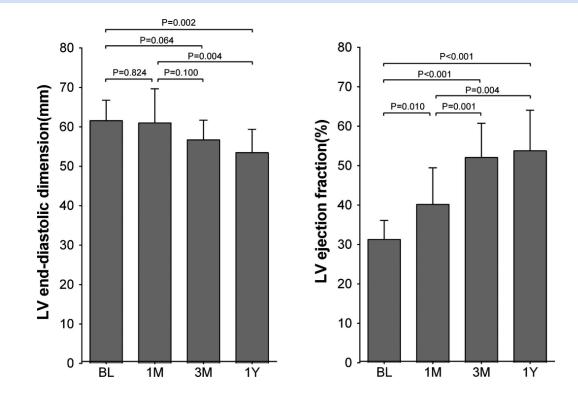
2. Wazni OM et al. N Engl J Med 2021

3. Andrade JG et al. N Engl J Med 2021

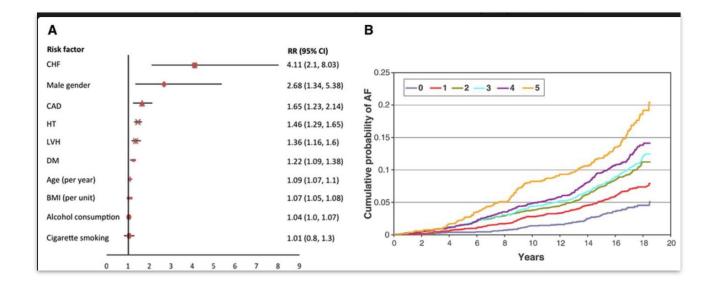

Healthcare Burden

	Cryoabl	ation	AAD			Risk Ratio	Risk R	Risk Ratio	
Study	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rando	m, 95% Cl	
Cryo-FIRST	25	107	39	111	30.2%	0.66 (0.43-1.02)			
EARLY-AF	30	154	36	149	29.8%	0.81 (0.53-1.24)			
STOP-AF First	31	104	43	99	39.9%	0.69 (0.47-0.99)			
Total (95% CI)		365		359	100.0%	0.71 (0.56-0.90)	-		
Total events	86		118						
Heterogeneity: Tau Test for overall effe				lf = 2 (P = 0.79);	l ² = 0% 0.	2 0.5 1 Favors Cryoablation	2 Favors AAD	
OSPITALIZ	ATION								
	Cryoabla	ation	AAD)		Risk Ratio	Risk	Ratio	
Study	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Random, 95% Cl	
EARLY-AF	5	154	13	149	25.1%	0.37 (0.14-1.02)	•		
STOP-AF First	13	104	32	99	74.9%	0.39 (0.22-0.69)			
Total (95% CI)		258		248	100.0%	0.38 (0.23-0.63)			
Total events	18		45						
Heterogeneity: Tau Test for overall effe				df = 1 (P = 0.95);	l ² = 0% 0.	2 0.5 1 Favors Cryoablation	2 Favors AAD	
MERGENC	Y DEPA	RTM	ENT	VISI	Т		Tavors er joabladon		
	Cryoabla	ation	AAD)		Risk Ratio	Risk	Ratio	
Study	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rand	lom, 95% Cl	
EARLY-AF	28	154	30	149	68.2%	0.90 (0.57-1.43)		_	
STOP-AF First	10	104	17	99	31.8%	0.56 (0.27-1.16)			
Total (95% CI)		258		248	100.0%	0.78 (0.50-1.20)		-	
Total events	38		47						

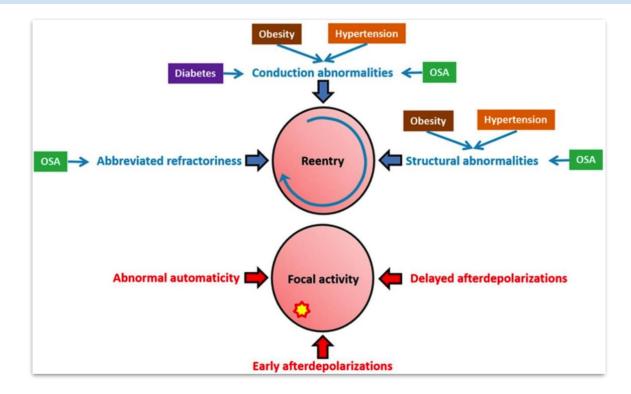
Andrade JG et al. J Am Coll Cardiol. 2021


AV Junction Ablation

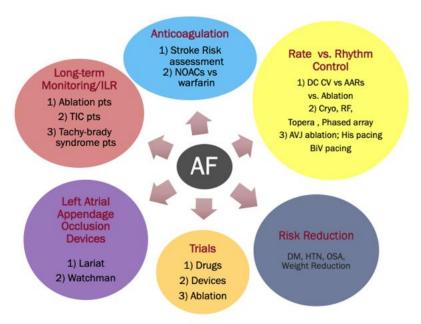
Mittal S et al., JAHA 2017


AV Junction Ablation & His Bundle Pacing

Huang W et al., JAHA 2017


"Other" Non-pharmacological Strategies

Lau et al., Circulation 2017


Role of Risk Factors

Lau et al., Circulation 2017

VMFH AF Center

Summary

- AF is a chronic myopathic disease rather than an arrhythmia
- HF and AF are chronic disease processes that require an integrated & coordinated multidisciplinary care to achieve the best long-term outcomes
- AF patients are at higher risk for HF admissions and cardiovascular events
- When feasible, long-term restoration of sinus rhythm in HF patients & symptomatic patients with AF should be sought after to reduce morbidity & mortality
- Ablation for AF has become a mainstay therapy with demonstration of improved outcomes and overall cost benefit to society

